top of page

Lesestoff für Impfärzte

Es ist wohl zuviel verlangt, dass Ärzte, die ihre Patienten mit den experimentellen Genimpfstoffen behandeln, sich selbstständig über die Risiken informieren. Man kann ihnen aber gezielt Lektüre empfehlen. Hier eine Auswahl der mittlerweile sehr umfangreichen wissenschaftlichen Literatur zur Gefährlichkeit von Spike-Protein, Nanopartikeln, PEG, CPG und Vektorviren. Wer sich übrigens weigert zu lesen oder es nicht kann - sollte auch nicht impfen.

SCHEIERMANN, J. & KLINMAN, D. M. 2014. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine, 32, 6377-6389.

MULLEN, G. E. D., ELLIS, R. D., MIURA, K., MALKIN, E., NOLAN, C., HAY, M., FAY, M. P., SAUL, A., ZHU, D., RAUSCH, K., MORETZ, S., ZHOU, H., LONG, C. A., MILLER, L. H. & TREANOR, J. 2008. Phase 1 Trial of AMA1-C1/Alhydrogel plus CPG 7909: An Asexual Blood-Stage Vaccine for Plasmodium falciparum Malaria. PLOS ONE, 3, e2940.

BROCK, A. S., THORNLEY 2021. Rapid Communication

Spontaneous Abortions and Policies on COVID-19 mRNA Vaccine Use During Pregnancy. An Institute for Pure

and Applied Knowledge (IPAK): An Institute for Pure

and Applied Knowledge (IPAK).

DOSHI, P. 2021. Does the FDA think these data justify the first full approval of a covid-19 vaccine? BMJ

EMA (2021) ‚EudraVigilance-European database of suspected adverse drug reaction reports‘, Available: (Accessed 10.11.2021).

OLAJIDE, O. A., IWUANYANWU, V. U., ADEGBOLA, O. D. & AL-HINDAWI, A. A. 2021. SARS-CoV-2 Spike Glycoprotein S1 Induces Neuroinflammation in BV-2 Microglia. Molecular Neurobiology.

LISEWSKI, A. M. 2020. Association between influenza vaccination rates and SARS-CoV-2 outbreak infection rates in OECD countries. Available at SSRN 3558270.

RIKIN, S., JIA, H., VARGAS, C. Y., CASTELLANOS DE BELLIARD, Y., REED, C., LARUSSA, P., LARSON, E. L., SAIMAN, L. & STOCKWELL, M. S. 2018. Assessment of temporally-related acute respiratory illness following influenza vaccination. Vaccine, 36, 1958-1964.

COWLING, B. J., FANG, V. J., NISHIURA, H., CHAN, K.-H., NG, S., IP, D. K. M., CHIU, S. S., LEUNG, G. M. & PEIRIS, J. S. M. 2012. Increased Risk of Noninfluenza Respiratory Virus Infections Associated With Receipt of Inactivated Influenza Vaccine. Clinical Infectious Diseases, 54, 1778-1783.

WOLFF, G. G. 2020. Influenza vaccination and respiratory virus interference among Department of Defense personnel during the 2017–2018 influenza season. Vaccine, 38, 350-354.

GAZIT, S., SHLEZINGER, R., PEREZ, G., LOTAN, R., PERETZ, A., BEN-TOV, A., COHEN, D., MUHSEN, K., CHODICK, G. & PATALON, T. 2021. Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity: reinfections versus breakthrough infections. medRxiv, 2021.08.24.21262415.

CARDOZO, T. & VEAZEY, R. 2021. Informed consent disclosure to vaccine trial subjects of risk of COVID‐19 vaccines worsening clinical disease. International journal of clinical practice, 75, e13795.

KELLENI, M. 2021. Potential Autoimmunity or Antibody Dependent COVID-19 Enhancement of SARS CoV-2 Vaccination or Convalescent Plasma: A Potential Man-Made Hades.

FARSHI, E. 2020. Cytokine Storm Response to COVID-19 Vaccinations. J Cytokine Biol, 5, 2.

RICKE, D. O. 2021. Two Different Antibody-Dependent Enhancement (ADE) Risks for SARS-CoV-2 Antibodies. Frontiers in Immunology, 12, 443.

PETRUK, G., PUTHIA, M., PETRLOVA, J., SAMSUDIN, F., STRÖMDAHL, A.-C., CERPS, S., ULLER, L., KJELLSTRÖM, S., BOND, P. J., SCHMIDTCHEN & ARTUR 2020. SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. Journal of Molecular Cell Biology, 12, 916-932.

LI, F., LI, J., WANG, P.-H., YANG, N., HUANG, J., OU, J., XU, T., ZHAO, X., LIU, T., HUANG, X., WANG, Q., LI, M., YANG, L., LIN, Y., CAI, Y., CHEN, H. & ZHANG, Q. 2021. SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1867, 166260.

HSU, A. C.-Y., WANG, G., REID, A. T., VEERATI, P. C., PATHINAYAKE, P. S., DALY, K., MAYALL, J. R., HANSBRO, P. M., HORVAT, J. C., WANG, F. & WARK, P. A. 2020. SARS-CoV-2 Spike protein promotes hyper-inflammatory response that can be ameliorated by Spike-antagonistic peptide and FDA-approved ER stress and MAP kinase inhibitors <em>in vitro</em>. bioRxiv, 2020.09.30.317818.

SHIRATO, K. & KIZAKI, T. 2021. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages. Heliyon, 7, e06187.

SKIBA, M. A. & KRUSE, A. C. 2020. Autoantibodies as endogenous modulators of GPCR signaling. Trends in Pharmacological Sciences.

KERR, J. R. 2019. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors. Journal of Clinical Pathology, 72, 651-658.

BROCK, A. S., THORNLEY 2021. Spontaneous Abortions and Policies on COVID-19 mRNA Vaccine Use During Pregnancy. Science, Public Health Policy, and the Law, 4:130-143.

CHIU, H.-H., WEI, K.-C., CHEN, A. & WANG, W.-H. 2021. Herpes zoster following COVID-19 vaccine: a report of three cases. QJM: An International Journal of Medicine, 114, 531-532.

UK-HEALTH-SECURITY-AGENCY (2021) ‚Covid-19 vaccine surveillance report week 42‘, Available: (Accessed 10.11.2021).

JIANG, H. & MEI, Y.-F. 2021. SARS–CoV–2 Spike Impairs DNA Damage Repair and Inhibits V (D) J Recombination In Vitro. Viruses, 13, 2056.

SAAD, M. H., BADIERAH, R., REDWAN, E. M. & EL-FAKHARANY, E. M. 2021. A Comprehensive Insight into the Role of Exosomes in Viral Infection: Dual Faces Bearing Different Functions. Pharmaceutics, 13, 1405.

BANSAL, S., PERINCHERI, S., FLEMING, T., POULSON, C., TIFFANY, B., BREMNER, R. M. & MOHANAKUMAR, T. 2021. Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by BNT162b2 (Pfizer–BioNTech) Vaccination prior to Development of Antibodies: A Novel Mechanism for Immune Activation by mRNA Vaccines. The Journal of Immunology, 207, 2405-2410.

TAIWAN-NEWS (2021) ‚Taiwan halts 2nd-dose BioNTech vaccinations for ages 12-17 amid concerns of myocarditis | Taiwan News | 2021-11-10 15:42:00‘, Available: (Accessed).

STEIN, A. (2021) ‚Die Gesamtsterblichkeit scheint sich 2021 zu erhöhen – Effekt der Impfkampagne? Großes Update 10.11.2021‘, [Online]. Available: (Accessed 13.11.2021).

CLASSEN, B. US COVID-19 Vaccines Proven to Cause More Harm than Good Based on Pivotal Clinical Trial Data Analyzed Using the Proper Scientific Endpoint,“All Cause Severe Morbidity”. Trends Int Med. 2021; 1 (1): 1-6. Correspondence: J. Bart Classen, MD, Classen Immunotherapies, Inc, 3637.

KIRSCH, S. 2021. Hace Covid vaccines killed 200.000 Americans? FDA. Covid-19 Early treatment fund.

KOSTOFF, R. N., KANDUC, D., PORTER, A. L., SHOENFELD, Y., CALINA, D., BRIGGS, M. B., SPANDIDOS, D. A. & TSATSAKIS, A. 2020. Vaccine- and natural infection-induced mechanisms that could modulate vaccine safety. Toxicology Reports, 7, 1448-1458.

DUTTA, S. & SENGUPTA, P. 2020. SARS-CoV-2 infection, oxidative stress and male reproductive hormones: can testicular-adrenal crosstalk be ruled-out? Journal of Basic and Clinical Physiology and Pharmacology, 31.

KOSTOFF, R. N., CALINA, D., KANDUC, D., BRIGGS, M. B., VLACHOYIANNOPOULOS, P., SVISTUNOV, A. A. & TSATSAKIS, A. 2021. Why are we vaccinating children against COVID-19? Toxicology Reports, 8, 1665-1684.

SUBRAMANIAN, S. V. & KUMAR, A. 2021. Increases in COVID-19 are unrelated to levels of vaccination across 68 countries and 2947 counties in the United States. European journal of epidemiology, 1-4.

JIANG, H. & MEI, Y.-F. 2021. SARS–CoV–2 Spike Impairs DNA Damage Repair and Inhibits V (D) J Recombination In Vitro. Viruses, 13, 2056.

SENEFF, S. & NIGH, G. 2021. Worse Than the Disease? Reviewing Some Possible Unintended Consequences of the mRNA Vaccines Against COVID-19. International Journal of Vaccine Theory, Practice, and Research, 2, 38-79.


LAURO, C. & LIMATOLA, C. 2020. Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response. Frontiers in Immunology, 11.

NDEUPEN, S., QIN, Z., JACOBSEN, S., ESTANBOULI, H., BOUTEAU, A. & IGYÁRTÓ, B. Z. 2021. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. bioRxiv, 2021.03.04.430128.

KRAMMER, F., SRIVASTAVA, K., TEAM, T. P. & SIMON, V. 2021. Robust spike antibody responses and increased reactogenicity in seropositive individuals after a single dose of SARS-CoV-2 mRNA vaccine. medRxiv, 2021.01.29.21250653.

VALENTINER-BRANTH, I. R. M.-H., HANNE-DORTHE, E., JENS, N., KATRINE FINDERUP, N., TYRA GROVE, K., KÅRE, M., KARINA LAUENBORG, M., ANN-SOFIE NICOLE, B. & PALLE 2021. Vaccine effectiveness after 1st and 2nd dose of the BNT162b2 mRNA Covid-19 Vaccine in long-term care facility residents and healthcare workers – a Danish cohort study.

ATZMON, G. (2021) ‚The Israeli People Committee’s April Report on the lethal impact of vaccinations — Gilad Atzmon thoughts and music‘, Available: (Accessed 14.08.2021).

SHIMABUKURO, T. 2021. ACIP June 2021 Presentation Slides | Immunization Practices | CDC. CDC: CDC.

OURWORLDINDATA (2021) ‚Vaccinations and COVID-19 – Data for Israel‘, Available: (Accessed 15.08.2021).

PAUL-EHRLICH-INSTITUT (2021) ‚Datenbank mit Verdachtsfällen von Impfkomplikationen‘, PEI Arzneimittelsicherheit [Online]. Available: (Accessed 14.08.2021).

TINARI, S. 2021. The EMA covid-19 data leak, and what it tells us about mRNA instability. BMJ, 372, n627.

EMA 2021. Assessment report: COVID-19 Vaccine Moderna. In: USE, C. F. M. P. F. H. (ed.). Committee for Medicinal Products for Human Use: EMA.

SZABAT-IRIAKA, B. & LE BORGNE, M. 2021. Brain safety concerns of nanomedicines: The need for a specific regulatory framework. Drug Discovery Today.

WISE, J. 2021. Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clots. British Medical Journal Publishing Group.

BURTSCHER, J., CAPPELLANO, G., OMORI, A., KOSHIBA, T. & MILLET, G. P. 2020. Mitochondria: In the Cross Fire of SARS-CoV-2 and Immunity. iScience, 23, 101631.

SHI, T.-T., YANG, F.-Y., LIU, C., CAO, X., LU, J., ZHANG, X.-L., YUAN, M.-X., CHEN, C. & YANG, J.-K. 2018. Angiotensin-converting enzyme 2 regulates mitochondrial function in pancreatic β-cells. Biochemical and Biophysical Research Communications, 495, 860-866.

LEI, Y., ZHANG, J., SCHIAVON, C. R., HE, M., CHEN, L., SHEN, H., ZHANG, Y., YIN, Q., CHO, Y., ANDRADE, L., SHADEL, G. S., HEPOKOSKI, M., LEI, T., WANG, H., ZHANG, J., YUAN, J. X.-J., MALHOTRA, A., MANOR, U., WANG, S., YUAN, Z.-Y. & SHYY, J. Y.-J. 2021. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circulation Research, 128, 1323-1326.

WATANABE, Y., MENDONÇA, L., ALLEN, E. R., HOWE, A., LEE, M., ALLEN, J. D., CHAWLA, H., PULIDO, D., DONNELLAN, F., DAVIES, H., ULASZEWSKA, M., BELIJ-RAMMERSTORFER, S., MORRIS, S., KREBS, A.-S., DEJNIRATTISAI, W., MONGKOLSAPAYA, J., SUPASA, P., SCREATON, G. R., GREEN, C. M., LAMBE, T., ZHANG, P., GILBERT, S. C. & CRISPIN, M. 2021. Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine. ACS Central Science, 7, 594-602.

SUZUKI, Y. J. & GYCHKA, S. G. 2021. SARS-CoV-2 Spike Protein Elicits Cell Signaling in Human Host Cells: Implications for Possible Consequences of COVID-19 Vaccines. Vaccines, 9, 36.

YANG, Q., JACOBS, T. M., MCCALLEN, J. D., MOORE, D. T., HUCKABY, J. T., EDELSTEIN, J. N. & LAI, S. K. 2016. Analysis of Pre-existing IgG and IgM Antibodies against Polyethylene Glycol (PEG) in the General Population. Analytical Chemistry, 88, 11804-11812.

LIU, L., WEI, Q., LIN, Q., FANG, J., WANG, H., KWOK, H., TANG, H., NISHIURA, K., PENG, J., TAN, Z., WU, T., CHEUNG, K.-W., CHAN, K.-H., ALVAREZ, X., QIN, C., LACKNER, A., PERLMAN, S., YUEN, K.-Y. & CHEN, Z. 2019. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight, 4.

SHIRATO, K. & KIZAKI, T. 2021. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages. Heliyon, 7, e06187.

KARWACIAK, I., SAŁKOWSKA, A., KARAŚ, K., DASTYCH, J. & RATAJEWSKI, M. 2021. Nucleocapsid and Spike Proteins of the Coronavirus SARS-CoV-2 Induce IL6 in Monocytes and Macrophages—Potential Implications for Cytokine Storm Syndrome. Vaccines, 9, 54.

MORENO, A., PITOC, G. A., GANSON, N. J., LAYZER, J. M., HERSHFIELD, M. S., TARANTAL, A. F. & SULLENGER, B. A. 2019. Anti-PEG Antibodies Inhibit the Anticoagulant Activity of PEGylated Aptamers. Cell Chemical Biology, 26, 634-644.e3.

SALK (2021) ‚The novel coronavirus’ spike protein plays additional key role in illness - Salk Institute for Biological Studies‘, Available: (Accessed 05.05.2021).

REYNOLDS, J. L. & MAHAJAN, S. D. 2021. SARS-COV2 Alters Blood Brain Barrier Integrity Contributing to Neuro-Inflammation. Journal of Neuroimmune Pharmacology, 16, 4-6.

RHEA, E. M., LOGSDON, A. F., HANSEN, K. M., WILLIAMS, L. M., REED, M. J., BAUMANN, K. K., HOLDEN, S. J., RABER, J., BANKS, W. A. & ERICKSON, M. A. 2021. The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. Nature Neuroscience, 24, 368-378.

WALACH, H., KLEMENT, R. J. & AUKEMA, W. 2021. The safety of covid-19 vaccinations—we should rethink the policy. Vaccines, 9, 693.

ZHANG, L., RICHARDS, A., BARRASA, M. I., HUGHES, S. H., YOUNG, R. A. & JAENISCH, R. 2021. Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proceedings of the National Academy of Sciences, 118, e2105968118.

GEUKING, M. B., WEBER, J., DEWANNIEUX, M., GORELIK, E., HEIDMANN, T., HENGARTNER, H., ZINKERNAGEL, R. M. & HANGARTNER, L. 2009. Recombination of Retrotransposon and Exogenous RNA Virus Results in Nonretroviral cDNA Integration. Science, 323, 393-396.

CLASSEN, J. B. 2021. Review of COVID-19 Vaccines and the Risk of Chronic Adverse Events Including Neurological Degeneration. Journal of Medical-Clinical Research and Reviews, 5, 1-7.

VOJDANI, A., VOJDANI, E. & KHARRAZIAN, D. 2021. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases. Frontiers in Immunology, 11.

EROSHENKO, N., GILL, T., KEAVENEY, M. K., CHURCH, G. M., TREVEJO, J. M. & RAJANIEMI, H. 2020. Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures. Nature Biotechnology, 38, 789-791.

HONG, L., WANG, Z., WEI, X., SHI, J. & LI, C. 2020. Antibodies against polyethylene glycol in human blood: A literature review. Journal of Pharmacological and Toxicological Methods, 102, 106678.

DOSHI, P. 2021. Peter Doshi: Pfizer and Moderna’s “95% effective” vaccines—we need more details and the raw data - The BMJ. @bmj_latest.

LETAROV, A. V., BABENKO, V. V. & KULIKOV, E. E. 2021. Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis of COVID-19 Infection. Biochemistry (Moscow), 86, 257-261.

NDEUPEN, S., QIN, Z., JACOBSEN, S., ESTANBOULI, H., BOUTEAU, A. & IGYÁRTÓ, B. Z. 2021. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. bioRxiv, 2021.03.04.430128.

DWIVEDI, R. 2021. Research looks at inflammatory nature of lipid nanoparticle component in mRNA vaccines. @NewsMedical.

CHARLIE-SILVA, I., ARAÚJO, A. P. C., GUIMARÃES, A. T. B., VERAS, F. P., BRAZ, H. L. B., DE PONTES, L. G., JORGE, R. J. B., BELO, M. A. A., FERNANDES, B. H. V., NÓBREGA, R. H., GALDINO, G., CONDINO-NETO, A., GALINDO-VILLEGAS, J., MACHADO-SANTELLI, G. M., SANCHES, P. R. S., REZENDE, R. M., CILLI, E. M. & MALAFAIA, G. 2021. An insight into neurotoxic and toxicity of spike fragments SARS-CoV-2 by exposure environment: A threat to aquatic health? bioRxiv, 2021.01.11.425914.

BUZHDYGAN, T. P., DEORE, B. J., BALDWIN-LECLAIR, A., BULLOCK, T. A., MCGARY, H. M., KHAN, J. A., RAZMPOUR, R., HALE, J. F., GALIE, P. A., POTULA, R., ANDREWS, A. M. & RAMIREZ, S. H. 2020. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiology of Disease, 146, 105131.

CHENG, Z., ZHANG, D., CHEN, J., WU, Y., LIU, X., SI, L., ZHANG, Z., ZHANG, N., ZHANG, Z., LIU, W., LIU, H., ZHANG, L., SONG, L., DUNMALL, L. S. C., DONG, J., LEMOINE, N. R. & WANG, Y. 2020. A novel viral protein translation mechanism reveals mitochondria as a target for antiviral drug development. bioRxiv, 2020.10.19.344713.

WU, K. E., FAZAL, F. M., PARKER, K. R., ZOU, J. & CHANG, H. Y. 2020. RNA-GPS Predicts SARS-CoV-2 RNA Residency to Host Mitochondria and Nucleolus. Cell Systems, 11, 102-108.e3.

MITANI, K. & KUBO, S. 2002. Adenovirus as an integrating vector. Curr Gene Ther, 2, 135-44.

MANKE, A., WANG, L. & ROJANASAKUL, Y. 2013. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Research International, 2013, 942916.

1.176 Ansichten0 Kommentare

Aktuelle Beiträge

Alle ansehen


bottom of page